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Abstract. Structure-activity relationships study was performed for a few series of cyclooxygenase-2 (COX-2)
inhibitors by using the Electronic-Topological Method combined with Neural Networks (ETM-NN). Specific
molecular fragments were found for active compounds (‘activity features’) from both series by the ETM
application. After this, a system of prognosis was developed as the result of training Kohonen’s self-
organizing maps (SOM) by the fragments. From the detailed analysis of all compounds under study,
requirements necessary for a compound to be COX-2 inhibitor were formulated. The analysis showed that any
requirements violation for a molecule resulted in a considerable decrease or even complete loss of its activity.
The found activity features identified correctly different marketed drugs and new compounds that had passed
pre-clinical and clinical trials; this fact confirms the workability of the system developed for the COX-2
inhibitory activity prediction.
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INTRODUCTION The most interesting point is that NSAIDs possess quite
distinct structures. Also, their characteristics such as
molecular shape, lipophilicity, electron density, flexibility,
polarity and H-bonding dynamics allow a wide range of
diversity. At the same time, minor modifications to a
particular compound are capable of inducing a drastic change
in its COX selectivity. A great many publications has arisen
recently on the synthesis of COX-2 inhibitors as well as
their structure-activity relationships (SAR)investigations. It
is worth to mention some of these works that have been
devoted to the theoretical study of mechanism of COX-2
inhibition and to the search for the correlation between their
structures and inhibitory activity.

All known anti-inflammatory, anti-pyretic and analgesic
preparations belonging to the class of non-steroidal anti-
inflammatory drags (NSAIDs) were studied enormously
from experimental (chemical and pharmacological) point of
view [1-3 and references therein], as well as from theoretical
one (docking, Monte Carlo simulations [4, 5] etc.).
Literature and patent analysis showed that a few thousands
of active compounds being potent NSAIDs had been
synthesized up to date already. All published works aimed at
synthesis and clinical trials of NSAIDs with minor side
effects [6, 7] such as ulcer of stomach and GI, internal
bleedings, kidney pathology etc., in comparison with other
drugs. NSAIDs inhibit prostaglandin synthesis by blocking
the cyclooxygenation of arachidonic acid to prostaglandin.

The mechanism of different NSAIDs binding to the
cyclooxygenase COX-2 active site has been studied in ref.
[9] by means of a wide range of theoretical techniques
including molecular dynamics and free energy calculations.
It was concluded that the theoretical methods predict
accurately the binding of different drugs based on different
scaffolds. The calculations allowed to describe in detail the
key recognition sites and to analyze how these recognition
sites change depending on the scaffold of the drug. The
conclusion is that the recognition site of COX-2 is very
flexible and can adapt its structure to very subtle structural
changes in the drug.

Until recently, a single cyclooxygenase (COX) enzyme
was thought to be responsible for metabolic reactions that
occur by the prostaglandin synthesis. Now it is known that
two isozymes, COX-1 and COX-2, exist, and COX-2 is an
inducible form that causes different side effects [7]. In this
way, the goal of new searches is to increase the NSAIDs
efficiency and selectivity. Some widely used marketed drugs
(indomethacyne, ibuprofen, diclofenac, et al.) have a high
potency in COX-2 inhibiting but insufficient selectivity;
others (celecoxib, valdecoxib, refecoxib, etc.), on the
contrary, have high selectivity but low inhibition potency
[8].

Molecular models of the complex between the selective
COX-2 inhibitor nimesulide and the cyclooxygenase active
site of human prostaglandin-endoperoxide synthase-2 have
been built using a combination of homology modelling,
conformational searching and automated docking techniques
[10]. The stability of the resulting complexes has been
assessed by molecular dynamics simulations and interaction
energy decomposition. It is found that nimesulide exploits
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the extra space made available by the replacement at position
523 of an isoleucine residue in COX-1 by a valine in COX-2
and establishes electrostatic interactions with both Arg-106
and Arg-499 (Arg-120 and Arg-513, in PGHS-1 numbering).
Two alternate binding modes are proposed, which are
compatible with the pharmacological profile of this agent as
a COX-2 selective inhibitor.

studies [17-29] devoted to the synthesis and SAR study in a
few new series of COX-2 selective inhibitors.

The goal of the present study is the search of the most
potent and selective inhibitors of COX-2 by applying the
combination of our own electronic-topological method
(ETM) and neural networks (ETM-NNs). Both of them have
already been successfully applied but separately to a wide
enough variety of tasks related to the structure-activity
relationships (SAR) investigation [28-34].

Recently a set of thirty five molecules of 1,3-
diarylisoindole derivatives endowed with selective COX-2
inhibitory activity was studied by using comparative
molecular field and comparative molecular similarity indices
analyses [11, 12]. This work provided useful information
regarding the pharmacophoric requirements for the COX-2
inhibitory activity. The FlexX program was used to find out
the binding orientation of this new class of 1,3-diaryl
isoindoles in the active site of COX-2. Additionally, the
flexible docking of eighty two structurally diverse COX-2
inhibitors has been successfully carried out. Simple linear
regression analysis provided the correlation coefficient values
of 0.73 and 0.67 for the two classes of COX-2 inhibitors.

Previously [35], with the help of the ETM, a large series
of NSAIDs (192 molecules) belonging to different structural
classes and possessing different levels of COX-2 inhibitory
activity were studied. The system for the activity prediction
developed as the result of this study included 6
pharmacophores, 6 anti-pharmacophores, and conditions
necessary for the activity demonstration by a compound, as
well. The system is capable of identifying active compounds
with high enough probability (~0.96 in average) under
condition that compounds with IC50 ≤0.1 µM are considered
as active ones while for inactive compounds IC50 ≥2.0 µM.
An examining set of 29 compounds was taken to test the
system. It should be mentioned that in the set there were a
few skeletons that did not enter the training set. However,
the results of that study were in agreement with experimental
data on biological activities for all tested compounds.

The de novo design program Skelgen has been used in
[13] to design COX-2 inhibitor structures for four targets of
pharmaceutical interest. It is shown that the Skelgen
algorithm generates representatives of many inhibitor classes
within a very short time, and that a new similarity measure
implemented in the program is useful for comparing and
clustering designed structures. Design of new selective
COX-2 inhibitors by assembling dynamically molecular
building blocks (DycoBlock system) has been proposed by
Zhu et al. [14]. This method is based on the multiple-copy
stochastic dynamics simulation in the presence of a receptor
molecule. In this method, a novel algorithm was used to
dynamically assemble the molecular building blocks to form
candidate compounds. Thus, thirty-three kinds of molecular
building blocks were used in the design of novel inhibitors
and the investigation of diversity.

This work extends the study of various COX-2 inhibitors
by applying a new combined approach based on the further
analysis of the ETM results by means of Artificial Neural
Networks (ANNs). The latter are capable of elucidating
structure-activity relationships (SAR) because of their ability
to take into account any non-linear dependencies among the
values of different molecular characteristics. Therefore,
ANNs can be of significant interest for QSAR studies [36].
As an example, the feed-forward neural networks (FFNN)
trained with the back propagation algorithm [37, 38] are
widely used to perform different chemical calculations. If the
dependencies between analyzed descriptors and molecular
parameters are non-linear, the neural networks can produce
more accurate models than linear regression methods do.
This can be very important for practical applications, e.g.
such as design of new compounds.

With the aim of elucidating structural features that
govern the differential inhibitory binding behavior of COX-1
and COX-2 inhibitors, molecular modeling studies were
undertaken to generate atomic models compatible with the
experimental data available [15]. Manual docking of different
COX-2 inhibitors, including selective and non-selective
ligands such as rofecoxib, ketoprofen, suprofen, carprofen,
zomepirac, indomethacin, diclofenac and meclofenamic acid,
was undertaken, followed by using the AMBER program, to
refine the structure of the protein ligand complex.

MATERIALS AND METHOD

The Method's Description

Since details of the ETM can be found in literature [39-
42], we only give here the most distinguished properties of
the ETM relative to other methods used in diverse SAR
studies. ETM belongs to the so-called structural methods.
So, the main part of the method is a language for the
compound structure description. The language reflects the
discrete nature of compounds that are viewed as consisting
of atoms some of which are chemically bonded. Labelled
graphs appeared to be the most appropriate mathematical
counterparts of chemical structures and relationships on their
atoms and bonds. As known, a graph’s representative is a
matrix of the order n x n, where n is the number of the
graph’s vertices. Therefore, the ETM proposes Electronic-
Topological Matrices of Contiguity (ETMC) to be its own,
very special language, for chemical compounds’ description.
Bonds have no orientation, thus the matrices are

Very recently, the novel molecular alignment method
with the Hopfield Neural Network (HNN) was proposed and
investigated on a data set of COX-2 inhibitors by applying
to the three-dimensional quantitative structure-activity
relationship (3D-QSAR) analysis [16]. By this, the
molecules were represented by four kinds of chemical
properties (hydrophobic group, hydrogen-bonding acceptor,
hydrogen-bonding donor, and hydrogen-bonding
donor/acceptor), and then the properties of any two
molecules were looked upon their correlation by using HNN.
Two data sets (inhibitors of human epidermal growth factor
receptor-2 and inhibitors of cyclooxygenase-2) were
investigated to validate the method. As a result, the robust
and predictive 3D-QSAR models were successfully obtained
for both data sets. And, finally, there are the most recent
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symmetrical relative to their left diagonal, and it is enough
to have only the right upper triangle of any such matrix
along with its diagonal.

compounds, respectively; n3 and n4 have the same meaning
relative to the class of inactive compounds; N1 and N2 are
numbers of molecules in the classes of active and inactive
compounds, respectively, whereas N3 = n1 + n3 and N4= n2
+ n4. The probability value Pa is related exactly to the
compounds that contain an activity feature found from the
ETM calculations, while a takes into account all
compounds in the series, as it can be seen from the
equations.

Vertices of such graphs (diagonal elements aii of the
ETMCs) are naturally labeled by values being atomic
characteristics (charges, HOMO/LUMO coefficients etc.).
For off-diagonal elements there are two possibilities. If they
represent chemical bonds, then a fixed bond characteristic is
to be chosen for all of them. Otherwise, a value of
corresponding distance for the given pair of atoms is taken.
To begin the electronic-topological study, one must have a
series of compounds that is representative enough (at least, a
few tens of substances). The activity of compounds can be
estimated either qualitatively (i.e. active/inactive, in which
case there are two classes for comparison) or quantitatively
(then there can be more than two classes). Ideally, half of
compounds in the teaching set should be inactive. After all
these conditions have been met, the main steps of the ETM-
study can be described as follows:

As far as the order of an ETMC depends on the number
of atoms of the corresponding molecule, ETMCs cannot be
used in a straightforward manner as the input for ANNs.
Consequently, the information contained in ETMCs should
be rearranged somehow in order to serve as input vectors of
equal dimensionality for an ANN. To overcome this
problem, a special algorithm being a combination of FFNN
and the Kohonen’s self-organizing map (SOM) [43, 44] has
been proposed. The supervised learning was performed using
a variant of FFNN known as the Associative Neural Network
(ASNN) [45]. This type of networks improves the prediction
ability of FFNN by explicit correction of the bias of this
method.

1. Calculation of spatial and electron characteristics for
atoms and bonds for all compounds under study.

2. The ETMC formation for every molecular structure,
by choosing previously appropriate atom and bond
properties from the data calculated (usually, they are
charges for atoms being the diagonal elements and the
Wiberg’s indices for bonds; otherwise, distances are
taken for non-bonded atoms).

The Kohonen SOM training is carried out in such
manner, that input vectors from the n-dimensional space
(n>>2), which possess similar properties are mapped to the
same neuron or some nearby neurons in the two-dimensional
space. Therefore, by considering all input vectors projected
to the same output neuron, it is possible to determine
clusters of vectors that have similar properties in the n-
dimensional space. Since all vectors from the same cluster
are similar, only one of them can be used to represent the
properties of all the rest vectors of this cluster. The use of
one such vector instead of a number of vectors provides the
input data compression. Such compression was used in the
current study to align molecules and decrease the number of
input parameters used for the ASNNs training (Fig. 1).

3. Setting on some desirable level for the activity
prediction and some precision values to have ability
to compare the values of corresponding atomic and
bond characteristics.

4. Comparing all ETMCs with the ETMC for the most
active compound, to select those structural fragments
Si (i∈I), which are common for all active compounds
only.

Thus, the principal idea of this new approach is to
determine initially for each molecule the number of clusters
containing elements of its ETMC, and, afterwards, to use
the averaged values of each cluster for the ASNNs training.
The algorithm proposed for supervised training makes it
possible to evaluate the weights of fragments represented by
the ETMC’s submatrices (or ETSC, for short) that have been
obtained by the ETM calculations. To do this, their
projections on the Kohonen’s maps that correspond to their
initial ETMCs are calculated. In this way the degree of each
fragment’s presence in a molecule can be determined. This
approach by several orders decreases the number of input
parameters required for neural network training, preserves the
spatial structural information of molecules and calculates
neural network models with high generalization ability.

5. Estimating the fragments selected (“activity features”)
in accordance with probabilistic criterion (Pa) and
choosing those of them, which correspond to the
desired level of prediction that has been set before
calculations. If the fragments found are not
informative enough, change some initial settings (or
all of them) and repeat steps 3-5.

When the activity features S i, i∈I, have been successfully
found for a teaching set and subsequently proved for an
examining set, they can be used to predict the activity of
interest (A) for new series of compounds with probability Pa
estimated previously for each structural feature.

A criteria that are commonly used in structural methods
for evaluating the probability of a structural feature Si (for a
fixed i) occurrence in active compounds from the given
series are calculated according to the equations The Scheme of the Combined ETM-NNs Approach
Pa = (n1+1)/(n1+n3+2) and (1) The algorithm for the data resulting from the ETM

calculations analysis (ETM-data) is developed on the base of
Volume Learning Algorithm created for the analysis of
CoMFA data [46]. This method is implemented as a
recurrent iterative application of the Kohonen SOMs and
ASNNs. The general block-schema of the ETM-NNs data
analysis is presented in (Fig. 2.)

√ N 1 . N 2 . N 3 . N 4

(n 1 . n4 . n2 . n3)
a =

.
(2)

There n1 and n2 are amounts of molecules possessing and
not possessing the feature of activity Si in the class of active



882    Mini-Reviews in Medicinal Chemistry, 2005, Vol. 5, No. 10 Dimoglo et al.

Fig. (1). General scheme of data analysis provided by the ETM-NN method application.

By this approach, the stepwise process of the ETM-data
analysis can be summarized as follows:

(9) The ETMC fragments calculation and the input data
set formation for the Kohonen SOM.

(1) The initial set of input data formation (ETMCs
rearrangement, for all molecules).

(10) Calculation of projections on the units of the
Kohonen’s SOM for each fragment and the projection
error (Eq).(2) The Kohonen’s network parameters initialization;

calculating clusters from each ETMC, for all
molecules.

(11) The weight of each fragment (1/Eq) calculation and
new data set creation by using calculated fragment
weights as parameters.(3) Data compression by using cluster centers as the

initial set. (12) Choosing the most informative ETMC fragments
(after the ASNN training) by using special pruning
methods [47, 48].

(4) Analysis of the compressed data by using ASNNs;
calculation of the average prediction error (Ec).

(13) Predicting activities of new compounds.(5) Comparing the Ec value to that one in the preceding
stage of learning, Ep (initially, Ep = 10e-3). If Ec <
Ep, the current cluster distribution is saved.

The first step is to prepare an initial data set for the SOM
algorithm training (we can call it “triples calculation”). The
data sample is a triple (d1, d2, d3), where d1 and d2 are
charges of two atoms and d3 is a connection between them
(see Fig. 1). The di values, i=1,2,3, are taken from the
ETMCs. The total number of data samples corresponds to
the amount of all two-atom connections taken from all
ETMCs.

(6) Decreasing the size of the Kohonen’s map.

(7) Repeating the steps 2 – 6 until the map size, S,
decreases to eight nodes (the number of nodes in a
columns (x) is 4, the number of rows (y) is 2).

(8) Choosing the best cluster distribution, relative to the
minimal E value, and predicting the activity of new
compounds.

The second step includes initialization and training of the
Kohonen’s network of the size S=x y (Fig. 2). The initial
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Fig. (2). Block-scheme of the ETM-NN calculations.

size of Kohonen’s maps was S=2 SETM, with SETM being
the size of the largest ETM matrix. Upon subsequent
compressions, the map size was decreased by two units in
both x and y directions. When using the Kohonen’s
networks, it is possible to create a nonlinear projection of

high-dimensional data set onto a low-dimensional domain.
Detailed description of a Kohonen’s network can be found in
[43, 46].

In short, to train a Kohonen’s map, two phases are
needed. The first phase of 50,000 iterations was used for the
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weight vectors of the map neurons for rough ordering. In the
second phase with 100,000 iterations, the values of the
weight vectors were fine-tuned. The initial learning rate and
neighborhood radius of the SOM under training were
selected to be α1=0.6, σ1=2/5(x∗y)0.5 and α2=0.15,
σ2=2/5σ1 for the first and the second phase, respectively.

fragments selection. The optimized fragments were used to
visualize those regions of molecules under study that were
found to be important for the analyzed activity
demonstration by the molecules.

DATA SETS
To form a compressed sample data set, the cluster centers

(Cn) were calculated by averaging over all values entering
into the given cluster, Cn = Xni/m, where Xni was the value
of the i-th element of the ETMC for the n-th molecule, and
m was the number of ETMC values entering into the cluster
for the molecule n.

Conformational and electronic parameters were calculated
for 79 inhibitors of COX-2 taken from different series [50-
56]. Biological activities of these compounds were measured
on human COX-2 (in the whole cell and/or whole blood
assays) and, for some of them, correlated with measurements
on the rat paw edema assay. To have the most representative
activity fragments as pharmacophores and
antipharmacophores (being the result of the ETM
calculations), compounds with some very high and,
correspondingly, very low values of IC50 (substance
concentration sufficient for inhibiting 50% of the enzyme)
were selected. Next, the compounds were divided into five
series by the type of their base skeletons (see Fig. 3). Tables
1 and 2 contain data on the structures and corresponding
values of IC50 for all compounds in these series. We shall
refer the series of 79 compounds as data set 1, or, in short,
DS1, elsewhere below.

At the third step, the compressed data are tested on the three-
layer ASNNs. A new data set is formed for the ASNN
learning from the mean values of input parameters calculated
for each cluster (see [45] for details). The number of neurons
in the input layer corresponds to the number of clusters
obtained as the output of the SOM. The hidden layer
contains five neurons. The bias neuron is presented both on
the input and hidden layer. An ensemble of M=100 neural
networks was trained. The activity values were calculated for
each network (ASNN) and averaged over all M networks.
This value was used to calculate the statistical coefficients
[49]. The quality of each final model was assessed by the
leave-one-out method (LOO). By the method, each molecule
is removed from the training set, and the remaining set is
used to separate molecules into classes of activity, thereby
predicting the activity of this molecule and evaluating the
quality of the decision rule.

All compounds are divided into two classes of highly
active (48 mol., IC50 < 10 µM) and inactive molecules (31
mol., IC50 > 10 µM). Compounds that have been studied
previously by the ETM approach [35], are added to our
initial sample as well. They are benzopyrane derivatives
[57], sulfonyl-containing terphenyls [58], diaryl derivatives
of pyrazole [59], and diaryl-substituted pyridines [60] (see
Fig. 4, skeletons VI-IX). Details on the structure of these
compounds were reported earlier [35]. The compounds
affiliation to different structural classes is very important for
our study, so as the fact that related experimental data
(biological parameters) are obtained by the same research
group [57-60]. At the same time, the search for common
pharmacophores in the structures of active compounds is
more informative when they possess diverse skeletons but
not the similar ones. So, the total number of compounds
investigated at the training phase as data set 2, or DS2, is
227. The test set included each tenth selected compound (22
in all).

The fourth step includes the pharmacophores calculations
as the ETMCs fragments. At the fifth step, the weight of
each fragment (pharmacophore or antipharmacophore) is
estimated for each compound as its projection error, Eq,
relative to the same nodes of the Kohonen’s map as its
comprising ETMC. The weight is taken as the inverse of its
Eq: Wij=1/Eqij. Here i is the molecule’s number, and j is the
fragment’s number. Based on the weight coefficients
calculated, a new table was formed that used the fragment
weights as parameters.

The last step includes application of the pruning
algorithms aiming in a set of the most relevant ETMC

I II III

IV V

R3

O

N
H

R1

R3

SO2R2

O

O

Me Me

O R

SO2Me

R1

SO2Me

R3

S
R1

R3

R2

R1

SO2R3

A

B

R2

R2

  

Fig. (3). Common molecular skeletons of the studied DS1-compounds (COX-2 inhibitors taken from different series).
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Table 1. COX-2 Inhibition Indices IC50  ( M) and Substituents Related to the Structures by the Type I-IV

No. com R1 R2 R3 IC50 Exp No. com R1 R2 R3 IC50 Exp

structures by the type I

1 S Me 2,4-Cl2-Ph 0.01 + 14 S Me 3-Me-Ph >10 –

2 O Me 2,4-F2-Ph 0.021 + 15 S Me 4-i-Pro-Ph >10 –

3 S Me 2,4-F2-Ph 0.023 + 16 S Me 4-t-Bu-Ph >10 –

4 O CF3 2,4-F2-Ph 0.04 + 17 S Me 4-MeO-Ph >10 –

5 S Me 4-Me-Ph 0.05 + 18 O Me 4-SO2Me-Ph >10 –

6 O Me Cyclohexyl 0.05 + 19 S Me 4-CO2H >10 –

7 S Me Cyclohexyl 0.05 + 20 O Me 4-thiazolyl >10 –

8 S Me 2-F-Ph 0.1 + 21 S Me 5-thiazolyl >10 –

9 S Me 4-Et-Ph 0.1 + 22 O Me 4-tetrahydro
–pyranyl

>10 –

10 O Me 4-SMe-Ph 0.1 +

11 S Me 2-thiazolyl 0.1 + 23 SO2 Me 2,4-F2-Ph >10 –

12 CH2 Me 2,4-F2-Ph 0.2 + 24 S Et 2,4-F2-Ph >10 –

13 S Me 3-F-Ph >10 – 25 S COMe 2,4-F2-Ph >10 –

structures by the type II

26 =CH2 H H 0.0012 + 30 O H -CH=CH- 0.012 +

27 =CH2 H Me 0.0022 + 31 NOH H Me 0.061 +

28 O H Me 0.0028 + 32 O 4-SO2Me Me 0.096 +

29 O 4-F Me 0.0050 + 33 O H Me 0.110 +

structures by the type III

34 Br F SO2Me 0.005 + 43 H F COMe >30 –

35 i-Pro F SO2NH2 0.010 + 44 H F OCOH >30 –

36 H F SO2NH2 0.030 + 45 H F OCOMe >30 –

37 MeOCO      F SO2NH2 0.070 + 46 H F CH2OCOH >30 –

38 H F SO2NHMe 7.200 + 47 H F CHO >30 –

39 H F SO2Et >30 – 48 H F CN >30 –

40 H CMe2OH     SO2NH2 >30 – 49 H F CH2OH >30 –

41 MeOCO                     SO2NH2                  F >30 – 50 H F SMe >30 –

42 H F CONH2 >30 – 51 H F SOMe >30 –

structures by the type IV*

No.com R1 R2 R3 A—B- IC50 Exp No.com R1 R2 R3 A—B IC50 Exp

52 S 3,4-F2 NH2 CO-O- 98 + 57 S 3,4-F2 Me -CO-O- 64 +

53 O H Me -C3H3- 94 + 58 NH 4-F Me -C3H3- 58 +

54 NH SO2Me               F
#

-C3H3- 86 + 59 S 4-F Me -CO-O- 50 –

55 C=O H Me -C3H3- 80 + 60 S 4-F NH2 -CO-O- 42 –

56 S H Me-CH-O-CO- 65 + 61 C=O H Me -C3H3- <17 –

* - IC50 in %
# - SO2R3 substitued by F
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Table 2. COX-2 Inhibition Indices IC50  ( M) and Substituents Related to the Structures by the Type V

No. comp R IC50 No. comp R IC50

62
N

Cl

<0.01 73
N

F

0.08

63 4-Cl-Ph 0.02 74 0.08

64 Ph 0.04

65 2,4-F2-Ph 0.04

66 4-Me-Ph 0.04 75 2-Me-Ph 0.10

67 Cyclohexyl 0.04

68 0.04 76
N

0.12

69 4-F-Ph 0.05 77 0.14

70 3,4-F2-Ph 0.06

71 3-F-Ph 0.07

72

S

0.08 78 Et 23

79 Me 33

A

VI

VIII

ACF3

R1

R2

R3

R4

X

O

SO2Y

R1

R2

R3

N

N

R4

R5R1

R2

R3

N

R2

R1

R3

R4

VII

IX

Z

electronic structures were calculated from the semi-empirical
AM1 method [62]. Conformational analysis shows that
phenyl and benzene cycle planes are oriented by 33° to each
other; sulfone group has a valance angle OSO equal to 115°;
methyl sulfone fragment has the angle of 80.5° relative to the
plane of benzene cycle. All this is in agreement with the data
obtained from molecular docking and Monte Carlo
simulations [4]. The results of conformational analysis and
quantum-chemistry calculations were used to form ETMCs
for all compounds. Charges on atoms (qi) were selected as
diagonal elements; the Wiberg’s indices (Wij) were taken as
off-diagonal elements for chemically bonded atoms;
otherwise, optimized distances between corresponding two
atoms (Rij) were used.

After processing the ETMCs, a set of pharmacophores
(‘activity features’) was obtained. The features formed a basis
for a system capable of carrying out computer screening and
forecasting activities of new drug prototypes. Optimal values
of variations allowable in the process of the matrices
comparison (when testing if atoms and bonds match) were
found as ∆1=±0.12 for diagonal elements (qi) and ∆2=±0.22
for off-diagonal values (Wij and Rij). To determine the most
informative activity features, the desired values of
probabilistic estimations αa and Pa were set as 0.50 and
0.80, correspondingly.

Fig. (4). Common molecular skeletons of the studied DS2-
compounds: VI – benzopirane derivatives; VII – sulfonyl-
contained terpenils; VIII – diaryl derivatives of pyrazole; IX –
diaryl-substituted pyridines.

RESULTS AND DISCUSSION

a) Analysis of Pharmacophores and
Antipharmacophores

The set of selected pharmacophores formed the basis of a
system for the COX-2 inhibitory activity prediction.Conformational analysis for all compounds was done by

means of a molecular mechanics method (MMX) [61]. Their
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Fig. (5). Submatrix and corresponding structure of the Ph1 pharmacophore (obtained relative the template active compound 26 ).

Compound 26 possessing the highest anti-inflammatory
activity (i.e. as compound with the highest value of IC50 on
COX-2) and a good selectivity index (IC50 on COX-2 is 450
times greater than IC50 on COX-1) was taken as a template
for comparison. In Fig. 5, a sub-matrix of the template
ETMC (in short, its ETSC) is given, which corresponds to
one of the pharmacophores (Ph1) revealed.

of methylsulfone group (q= -0.11e). On the carbon atoms of
phenyl groups (C1 ÷ C4 and C8 ÷ C10) charges are close to
zero.

Docking of the celecoxib analogs into the COX-2
enzyme pointed out that just these parts of active molecules
had played the most important role in the ligand-receptor
binding (see for the enzyme crystal structure the Protein Data
Bank, www.rcsb.org, the 6COX code). 5-Aryl ring of
celecoxib makes hydrophobic contacts with Phe381, Tyr385,
Phe513, Trp387 and Leu384. Sulfonyl atoms of oxygen make
favorable electrostatic contact with Arg513 and Phe518 (i.e.
each oxygen is capable of forming an O…H – N hydrogen
bond). The Ph1 is very sensitive to different replacements

The given Ph1 pharmacophore consists of 11 atoms
located in different parts of a molecule. Ph1 is found in 41
active and 6 inactive compounds. Probability of its
realization Pa is 0.86. Sulfur atom S17 has a high positive
charge q= 0.96e; negative charges are concentrated on atoms
O18 and O19 of oxygen (q= -0.49e) and on the carbon atom

Fig. (6). Submatrix and corresponding structure of the Ph2 pharmacophore (obtained relative the template active compound 2).
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Fig. (7). Influence of atoms rearrangement and group replacement on the COX-2 inhibitory activity in the structures by the type I.

done in the phenyl ring. A substituent change, as well as
any changes in the nature of its atoms, can cause the electron
density redistribution in the investigated compound. As a
consequence, the ETSC of the activity fragment can change
considerably. From the example of group I it is seen how
the activity feature given classifies compounds of the group
into classes of activity. Compound 2 (see Table 1) is
considered as an active one (IC50 = 0.02-0.03 µM). It has
2,4-difluorophenyl as a substituent by the atom of oxygen
from the ether group. A pharmacophore Ph2 found relative
to compound 2 (template compound) is shown along with
its ETSC in (Fig. 6).

68 (active) 78 (inact ive)

O

O
O

S
O

O
CH3

O

O
O

S
O

O
CH3

Fig. (8). Dependence of the COX-2 inhibitory activity on the R2
subsituent in the structures by the type II.

As mentioned before, compounds with distinct skeletons
were selected for initial series to reveal best matching
pharmacophores. The developed system for the activity
prognostication classifies all five series of compounds well
enough. It can be seen from the statistical estimates of the
frequency of the pharmacophore Ph2 (Fig. 6) occurrence in a
series, which were calculated for all five series mentioned.
Figure 9 illustrates the dependencies between average
frequencies calculated for active and inactive compounds in
each of the five mentioned series (i.e. the dependencies
between frequencies and types of skeletons).

The Ph2 pharmacophore contains fewer atoms than Ph1,
although methylsulfon part of the molecule is present again.
Attention should be paid to atoms C10 and C12 of 2,4-
difluorophenyl that enter the Ph2. Namely their positions are
the most sensitive ones as to exhibiting the activity in view.
In the case of 3-fluorophenyl as a substituent (compound 13)
and under condition that the rest of the molecular structure
does not change, a sharp decrease of activity is observed
(IC50>10 µM). The system of the COX-2 inhibitory activity
prediction classifies compound 13 as inactive, because its
submatrix differs from the ETSC of the activity feature. The
oxygen of the ether group replacement by sulfur (compound
3) does not cause any activity changes (see Fig. 7).

From Figure 9 it follows that the highest frequency of
the pharmacophore appearance is reached in the group III.
The frequency decreases in groups of compounds taken in
the order V → I → IV and has the minimal value for the
group IV. It can be explained by low values of inhibitory
activity in this group. It should be noted, however, that the
most active compounds from this group (see Table 4) were
classified by our system for COX-2 inhibitory activity
prediction correctly. To check the ability of the obtained
system to predict the activity correctly for skeletons that
differ from the studied ones, the system was applied to
structures being indomethacyne derivatives [63, 64] (see Fig.
10).

However, if methylsulfone is replaced (as in compound
2) by acetyl in the 2,4-difluorphenyl presence (compound
25), this causes decrease of inhibitory activity (IC50 of
compound 25 is higher than 10 µM). At last, this
pharmacophore does not enter compound 25 as a
substructure. Therefore, this compound was not classified as
an active one. Further, the pharmacophore Ph2 is realized in
compound 68 (atoms entering the structural fragment are
shown by dotted line in Fig. 8). The i-Bu substituent
replaced by Et (compound 78) causes only partial presence of
the structural feature. As a result, compound 78 does not
possess inhibitory activity (IC50 = 23 µM). A peculiarity of the compounds is that they have no

sulfone group. However, our system classified them



The Structure - Inhibitory Activity Relationships Mini-Reviews in Medicinal Chemistry, 2005, Vol. 5, No. 10    889

Fig. (9). Dependence of the pharmacophore Ph2 realization in the DS1 data set (5 series) on the type of the compounds skeletons.

correctly as active/inactive ones. In spite of the common
structural similarity of the compounds, the R substituent’s
replacement in one of them causes considerable changes
(loss/appearance) in the activity of the resulting compound,
due to changes in its electronic-topological characteristics.
Compound 80 has IC50=0.3 nM, while compound 81
inhibits COX-2 by 1% under dosage of 100 nM. The result
of the prognostication shows that active compound 80
possesses the found pharmacophore, while compound 81
does not possess it. By this, the ETSC of compound 80
consists of 9 atoms. Correspondence of the ETSC to one of
pharmacophores found relative to the template compound 26
is shown in (Fig. 11).

successfully used for carrying out computer screening and
synthesis of potent inhibitors of COX-2 with diverse enough
molecular skeletons.

H3CO

N
N

S

O

Cl

R

Br80    R= (act ive)

81   R= i-propyl            (inact ive)

Fig. (10). Representatives of the examining selection being
indomethacyne derivatives (compounds 80 , 81 ).

The most part of NSAIDs, which did not enter the
teaching selection, were tested by means of the system
developed for the COX-2 inhibitory activity prediction as
well. (All these compounds passed pre-clinical and clinical
trials.). The prognostication system recognized 95% of them
as highly active compounds. In this way, the present study
resulted in a system development that is capable of
predicting the COX-2 inhibitory activity, which can be

b) Results of the ETM-NN Approach Application

The first stage of the data analysis was in finding a
model of cluster distribution capable of reflecting the
realistic internal structure of the data; the results are given in
Table 3. For the DS1, 337 clusters were found. ASNNs

Fig. (11).  The Ph3 activity fragment and its correspondent submatrix (obtained from the template active compound 80 ).
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recognized correctly 87.4%, or 59 from 68 compounds,
while for the test set the result was a bit lower, i.e. 81.8%,
or 9 compounds from 11. For the summary set the result
equals to 87.7% (70 compounds from 79).

For the DS2, second data selection, the results were
87.3%, or 179 compounds from 205, for training set, and
81.8%, or 18 compounds from 22, for test set,
correspondingly. For the summary data set the result was
89.9% (204 compounds from 227). The pruning methods
application afforded the selection of only 17 the most
influential ETMC fragments for the DS1. By this, ASNN
classified correctly 84.5%, or 88 compounds from 103, for
the training set, and 90.9%, or 10 compounds from 11, for
the test set. As to the DS2, only 12 fragments from 125
were selected for the further use. ASNNs classified correctly
88.8% (182 compounds from 205) and 86.4% (19
compounds from 22) for training and test sets,
correspondingly.

Table 3. Results of the Data on the COX –2 Inhibitors
Clustering

N/N Data
Clusters
number Molecules

in total Number of
predicted

Data set 1

1 Training set 337 68 59(87.4%) In our case, the two models comparison (one model
based on the cluster distribution found in a straightforward
manner, and another based on the ETMC fragments use for
the network training) tells in favor of close correspondence
between their results. However, the first model is not stable
enough and depends severely on the structures of compounds
selected for the training set. However, in comparison with
other commonly used approaches, the approach presented in
this study has shown quite satisfactory results. This fact
tells about workability of the both models found. These
models can be applied for new potent COX-2 inhibitors
design.

2 Test set 337 11 9(81.8%)

3 Total set 337 79 70(87.7%)

Data set 2

1 Training set 385 205 192(93.7%)

2 Test set 385 22 17(77.3%)

3 Total set 385 227 214 (94.3%)

For the DS2 the results were, correspondingly, 93.7% for
training set (192 compounds from 205), 77.3% for the test
set (17 compounds from 22), and for the summary set
ASNNs recognized correctly 94.3% or 214 compounds from
227. The results obtained tell in favor of high quality of
models for cluster distribution and its fitness for the analysis
of new data sets, so as for the search for pharmacophors.

CONCLUSION

Peculiarities of conformational and electronic structures
belonging to a large series of COX-2 inhibitors were
studied. The results of the study agree satisfactorily with
data obtained by other researches relative to the same classes
of compounds. By means of the ETM-software, SARs were
studied in the series of COX-2 inhibitors possessing quite
different skeletons.

At the second stage, only about 115 fragments were
selected for the DS1 and 125 of them were selected for DS2
(see Table 4). On the base of weights calculated for the
molecular fragments represented by ETMSs, ASNN were
capable of recognizing 80.6%, or 55 compounds from 68, as
to the training set, and 90.9% or 10 compounds from 11, for
the test set. In total, the network classified correctly 85.1%
or 67 compounds from 79.

A system for the COX-2 inhibitory activity prediction
was developed on the base of the pharmacophores revealed.
The obtained system allows for carrying out screening and
design of potent COX-2 inhibitors. The results of the ETM

Table 4. Results Calculated for COX –2 Inhibitors After Training SOM with the Pharmacophores Data

N/N Sets All pharmacophores Pharmacophores selected by pruning methods

Param. number Molecule Param. number Molecule

in total Predicted (%) in total Predicted (%)

Data set 1

1 Training set 115 68 55 (80.6%) 17 68 59 (84.5%)

2 Test set 115 11 10 (90.9%) 17 11 10 (90.9%)

3 Total set 115 79 67 (85.1%) 17 79 69 (86.8%)

Data set 2

1 Training set 125 205 179(87.3%) 12 205 182(88.8%)

2 Test set 125 22 18 (81.8%) 12 22 19(86.4%)

3 Total set 125 227 204 (89.9%) 12 227 205(90.3%)
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application to the test selection have shown that 95% of the
compounds are classified correctly.
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